Jump to content

Novel Kawasaki GII-17 Norovirus In Italy - Eurosurveillance


niman

Recommended Posts

Eurosurveillance, Volume 20, Issue 35, 03 September 2015
Rapid communication
 

+ Author affiliations


Citation style for this article: Medici MC, Tummolo F, Calderaro A, Chironna M, Giammanco GM, De Grazia S, Arcangeletti MC, De Conto F, Chezzi C, Martella V. Identification of the novel Kawasaki 2014 GII.17 human norovirus strain in Italy, 2015. Euro Surveill. 2015;20(35):pii=30010. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2015.20.35.30010

Received:24 August 2015; Accepted:03 September 2015
Link to comment
Share on other sites

Surveillance of noroviruses in Italy identified the novel GII.17 human norovirus strain, Kawasaki 2014, in February 2015. This novel strain emerged as a major cause of gastroenteritis in Asia during 2014/15, replacing the pandemic GII.4 norovirus strain Sydney 2012, but being reported only sporadically elsewhere. This novel strain is undergoing fast diversification and continuous monitoring is important to understand the evolution of noroviruses and to implement the future strategies on norovirus vaccines.

Link to comment
Share on other sites

During the winter season 2014/15, a novel GII.P17-GII.17 norovirus (NoV) strain emerged in Asian countries [1-4]. Since its emergence, this novel NoV strain, named Kawasaki 2014, has replaced the previously dominant GII.4 genotype Sydney 2012 variant in Asia, and it has been detected in a limited number of cases on other continents [1-5]. This epidemiological trend is also reflected in the GenBank database, with the vast majority of the Kawasaki 2014 GII.17 NoV sequences generated in studies from the Asian continent.

Here we report the detection of the Kawasaki 2014 GII.17 strain during the 2014/15 winter season in Italy. As sequence information on Kawasaki 2014 GII.17 NoVs detected outside the Asian continent is limited [5], we determined the sequence of a large portion of the genome, including the full-length capsid gene of the GII.17 Kawasaki NoV strain circulating in Italy, and analysed the virus sequence with similar GII.17 NoV sequences available in the GenBank database.

Link to comment
Share on other sites

Genotyping

The NoV genome contains three open reading frames (ORFs). ORF1 encodes non-structural proteins including the RNA-dependent RNA polymerase (RdRp), while ORF2 and ORF3 encode the major capsid protein VP1 and a minor structural protein VP2, respectively [6]. NoVs are classified in at least six genogroups, GI to GVI [6]. NoV genogroups are further divided in various genotypes based on differences in the RdRp region (polymerase genotype, or pol type) and in the VP1 (capsid genotype, or cap type) [7]. NoV genotyping was performed using standardised sequence analysis web-based tools developed and maintained by the NoroNet [8].

Link to comment
Share on other sites

Surveillance of noroviruses in Italy

The Italian Study Group for Enteric Viruses (ISGEV; http://isgev.net) monitors the epidemiology of enteric viruses in children through hospital-based surveillance. A subset of about half of the NoV-positive samples is systematically genotyped in both region A (ORF1, RdRp) and region C (ORF2, capsid). From September 2014 to March 2015, NoV prevalence was 12% (137/1,144) and NoVs were typed in 81 cases (59%). GII.P17-GII.17 NoV strains were detected in two sporadic cases of acute severe gastroenteritis in young children hospitalised in February 2015 in two distinct Italian regions.

Link to comment
Share on other sites

Sequence analysis

Upon direct sequencing of the RT-PCR amplicons, the two strains, PR668/2015/ITA and BA603–6/2015/ITA, were found to be identical in the short diagnostic regions A and C. We determined the sequence of a large portion (3.2 kb) of the genome at the 3’ end for strain PR668/2015/ITA. Viral RNA was extracted from 140 µl of stool suspension using the QIAmp viral RNA kit (Qiagen, GmbH, Hilden, Germany). A 3’-rapid amplification of cDNA ends (RACE)-PCR) protocol was used to generate the 3.2-kb amplicon encompassing the 3’ end of ORF1, the full-length ORF2 and ORF3, and the 3’ untranslated region (UTR) until the poly(A) tail, using the reverse primer VN3T20 [9] and the forward primer JV12Y [10]. The RACE product was cloned and the sequence was determined. Phylogenetic analysis was performed using MEGA v. 6.0 [11].

The 3.2-kb sequence of the Italian NoV GII.P17-GII.17 strain has been deposited in GenBank under accession number KT346356. The partial sequence of ORF1 (807 nt), and the full-length sequences of ORF2 (1,621 nt) and ORF3 (849 nt) of strain PR668/2015/ITA were analysed with NoV GII.P17-GII.17 sequences available in the GenBank database (Figure 1).

Figure 1

Phylogenetic analysis based on partial ORF1, full ORF2 and full ORF3 sequences of GII.17 norovirus, Italy, February 2015

/images/dynamic/articles/21222/15-00484-f1

The Italian GII.P17-GII.17 strain is indicated in bold. Trees were built with the maximum-likelihood method, and bootstrapped with 1,000 repetitions. Bootstrap values > 80% are indicated. The scale bar indicates the number of nucleotide substitutions per site.

The topology of the trees in the multi-target phylogenetic analysis was conserved, with the GII.P17-GII.17 Kawasaki 2014 NoV forming a monophyletic branch and further segregating into two genetic subclades. The first subclade containing the Italian PR668/2015/ITA strain clustered with GII.P17-GII.17 NoVs detected in China and Hong Kong during 2014 and 2015, and was genetically related (99.9%) to a GII.P17-GII.17 strain detected in the United States (US) in November 2014. The second subclade included GII.P17-GII.17 NoV detected in Japan and Taiwan during 2013 and 2014. The viruses of the two subclades showed a moderate degree of nucleotide and amino acid divergence in the ORF2 and ORF3 sequences (1–1.9% nucleotide and 0–0.4% amino acid differences in ORF1, 0.4–4.1% nucleotides and 0.9–6.2% amino acids in ORF2, and 0.5–3.3% nucleotides and 1–4.9% amino acids in ORF3). Interestingly, the GII.17 capsid sequences of the two genetic subclades differed markedly from the oldest GII.17 capsid sequence available in GenBank database, dating back to 1978 (23.3–24.8% nucleotide and 14.2–16.6% amino acid differences in ORF2, and 19.4–27% nucleotide and 22.1–22.9% amino acid differences in ORF3).

Several changes in the VP1 sequence were observed between the two Kawasaki 2014 subclades, mostly, but not exclusively, affecting the antibody blockade sites, i.e. the putative epitopes (A-E) located in the capsid protruding hypervariable P2 domain (Figure 2). In the 543 amino acid VP1 protein, 17 amino acid changes (3.1% divergence) and four insertions separate the two Kawasaki 2014 subclades, while 38 amino acid changes (7% divergence) and several insertions/deletions separate the Kawasaki 2014 GII.17 NoV and the former GII.17 recombinant forms.

Figure 2

Amino acid substitutions in the VP1 sequence of norovirus GII.17 strains, 1978 to 2015

/images/dynamic/articles/21222/15-00484-f2

The putative blockade epitopes A–E are indicated. The Italian GII.P17-GII.17 strain is indicated in bold. Dots indicate sequence conservation. Dashes indicate deletions/insertions of the amino acid residues. Amino acid numbering is based on the sequence of the C142 strain (JN699043).

Link to comment
Share on other sites

Discussion

NoVs are a major cause of acute gastroenteritis in both children and adults, with sporadic cases and outbreaks in various epidemiological settings [6]. Although more than 30 cap genotypes within genogroups GI, GII, and GIV may infect humans [7], a single genotype, GII.4, has been associated since the mid-1990s with the majority (ca 70–80%) of NoV-associated cases of gastroenteritis worldwide [12]. GII.4 NoV strains undergo a continuous process of genetic/antigenic diversification and periodically generate new strains via accumulation of point mutations or recombination, with one novel GII.4 variant emerging every two to three years [12,13] and becoming predominant globally. NoV vaccines based on GII.4 NoV strains are currently under development [14].

In the winter season 2014/15, the GII.P17-GII.17 NoV strain Kawasaki 2014 emerged in Asia, replacing the previously dominant GII.4 genotype Sydney 2012 variant [1-4]. A signature of the Kawasaki 2014 variant is a novel pol type GII.P17, combined with a GII.17 ORF2 gene. Previously, NoVs with a GII.17 cap genotype possessed a GII.P4, GII.P3, GII.P13 or GII.P16 pol genotype [15-18]. Although being predominant in several Asian countries, this novel GII.P17-GII.17 strain has been detected in a limited number of cases on other continents [1-5]. The epidemiological trends exhibited by the Kawasaki 2014 NoV variant are considered unique, as, so far, this is the only non-GII.4 NoV strain to have shown such epidemic pattern. The emergence of the novel GII.P17-GII.17 NoV strain in the Asian countries has been associated with increased NoV activity, i.e. with increased incidence of NoV-induced acute gastroenteritis, in the 2014/15 winter season, compared to the previous (2013/14) winter season [1-3]. This pattern has been observed, but not consistently, during the worldwide spread of NoV GII.4 variants [19]. Based on current literature on GII.17 NoVs, there is no indication on the clinical severity of the novel GII.17 virus [1-5]. Likewise, our study did not assess whether Kawasaki 2014 NoVs are associated with increased severity of the clinical symptoms.

Hospital-based surveillance for NoV identified the emergence of GII.P17-GII.17 strains in Italy at the end of the 2014/15 winter season, in February 2015. The viruses were genetically closely related to GII.17 NoVs identified in the US and Asia in 2014 and 2015 [3,5], forming a distinct subclade of the Kawasaki 2014 GII.17 NoV variant. Co-circulation of two subclades of Kawasaki 2014 GII.17 NoV with several amino acid changes in the putative capsid epitopes could suggest that this novel strain is undergoing fast diversification, mirroring what was seen globally for the epidemic GII.4 variants [12].

In addition, the emergence and spread of the novel GII.17 variant Kawasaki 2014 could represent a challenge for the efficacy of the candidate NoV vaccines [14], that target the globally predominant GII.4 NoV, as it is not known whether vaccine immunity elicited to GII.4 NoV is cross-reactive with GII.17 viruses. Continuous monitoring of the epidemiology of human NoV is important to understand the evolution of NoV and to implement the future strategies on NoV vaccines.


Acknowledgements

This study was partly supported by the projects ‘Epidemiologia molecolare e studio dei meccanismi evolutivi di norovirus e rotavirus umani’, granted by the University of Parma, Italy (Fondi di Ateneo 2014) and ‘Norovirus: caratterizzazione molecolare ed epidemiologia’, granted by the University of Palermo, Italy (Fondi di Ateneo 2012).

Link to comment
Share on other sites

References

  1. FuJAiJJinMJiangCZhangJShiC, et al.  Emergence of a new GII.17 norovirus variant in patients with acute gastroenteritis in Jiangsu, China, September 2014 to March 2015. 

    Euro Surveill. 2015;20(24):21157DOI: 10.2807/1560-7917.ES2015.20.24.21157 PMID: 26111236
  2. LuJSunLFangLYangFMoYLaoJ, et al.  Gastroenteritis Outbreaks Caused by Norovirus GII.17, Guangdong Province, China, 2014-2015. 

    Emerg Infect Dis. 2015;21(7):1240-2DOI: 10.3201/eid2107.150226 PMID: 26080037
  3. MatsushimaYIshikawaMShimizuTKomaneAKasuoSShinoharaM, et al.  Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. 

    Euro Surveill. 2015;20(26):21173DOI: 10.2807/1560-7917.ES2015.20.26.21173 PMID: 26159307
  4. de GraafMvan BeekJVennemaHPodkolzinATHewittJBucardoF, et al.  Emergence of a novel GII.17 norovirus - End of the GII.4 era? 

    Euro Surveill. 2015;20(26):21178DOI: 10.2807/1560-7917.ES2015.20.26.21178 PMID: 26159308
  5. ParraGIGreenKYGenome of Emerging Norovirus GII.17, United States, 2014.

    Emerg Infect Dis.2015;21(8):1477-9DOI: 10.3201/eid2108.150652 PMID: 26196235
  6. Green KY. 2013. Caliciviridae: the noroviruses. In: Knipe, D.M., Howley, P.M. (Eds.), Fields virology, 6th ed. Wolters Kluwer Health/Lippincott Williams and Wilkins, Philadelphia, pp. 949-9.

  7. KronemanAVegaEVennemaHVinjéJWhitePAHansmanG, et al.  Proposal for a unified norovirus nomenclature and genotyping. 

    Arch Virol. 2013;158(10):2059-68DOI: 10.1007/s00705-013-1708-5 PMID: 23615870
  8. Dutch Ministry of Health. Welfare and Sport. National Institute for Public Health and the Environment (RIVM). Norovirus Genotyping Tool Version 1.0. Bilthoven: RIVM. [Accessed 24 Aug 2015]. Available from:http://www.rivm.nl/mpf/norovirus/typingtool

  9. WangQHHanMGCheethamSSouzaMFunkJASaifLJPorcine noroviruses related to human noroviruses.

    Emerg Infect Dis. 2005;11(12):1874-81DOI: 10.3201/eid1112.050485 PMID: 16485473
  10. VennemaHde BruinEKoopmansMRational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction.

    J Clin Virol. 2002;25(2):233-5DOI: 10.1016/S1386-6532(02)00126-9 PMID: 12367660
  11. TamuraKStecherGPetersonDFilipskiAKumarSMEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

    Mol Biol Evol. 2013;30(12):2725-9DOI: 10.1093/molbev/mst197 PMID: 24132122
  12. Hoa TranTNTrainorENakagomiTCunliffeNANakagomiOMolecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants.

    J Clin Virol. 2013;56(3):269-77DOI: 10.1016/j.jcv.2012.11.011 PMID: 23218993
  13. SiebengaJJVennemaHZhengDPVinjéJLeeBEPangXL, et al.  Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001-2007. 

    J Infect Dis. 2009;200(5):802-12DOI: 10.1086/605127 PMID: 19627248
  14. BernsteinDIAtmarRLLyonGMTreanorJJChenWHJiangX, et al.  Norovirus vaccine against experimental human GII.4 virus illness: a challenge study in healthy adults. 

    J Infect Dis. 2015;211(6):870-8DOI: 10.1093/infdis/jiu497 PMID: 25210140
  15. AyukekbongJAFobisongCTahFLindhMNkuo-AkenjiTBergströmTPattern of circulation of norovirus GII strains during natural infection.

    J Clin Microbiol. 2014;52(12):4253-9DOI: 10.1128/JCM.01896-14 PMID: 25274996
  16. MansJMurrayTYTaylorMBNovel norovirus recombinants detected in South Africa.

    Virol J. 2014;11(1):168.DOI: 10.1186/1743-422X-11-168 PMID: 25228444
  17. RackoffLABokKGreenKYKapikianAZEpidemiology and evolution of rotaviruses and noroviruses from an archival WHO Global Study in Children (1976-79) with implications for vaccine design.

    PLoS ONE.2013;8(3):e59394DOI: 10.1371/journal.pone.0059394 PMID: 23536875
  18. WangYHZhouDJZhouXYangTGhoshSPangBB, et al.  Molecular epidemiology of noroviruses in children and adults with acute gastroenteritis in Wuhan, China, 2007-2010. 

    Arch Virol. 2012;157(12):2417-24DOI: 10.1007/s00705-012-1437-1 PMID: 22886184
  19. VegaEBarclayLGregoricusNShirleySHLeeDVinjéJGenotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013.

    J Clin Microbiol. 2014;52(1):147-55DOI: 10.1128/JCM.02680-13PMID: 24172151
Link to comment
Share on other sites

Norovirus Hu/GII.P17_GII.17/PR668/2015/ITA RNA-dependent RNA polymerase (ORF1) gene, partial cds; and major capsid protein (ORF2) and minor capsid protein (ORF3) genes, complete cds BLAST:
 
Sequences producing significant alignments:
Select:AllNone Selected:0
Sequences producing significant alignments:
Select for downloading or viewing reportsDescriptionMax scoreTotal scoreQuery coverE valueIdentAccession
59215921100%0.099%KR083017.1
58755875100%0.099%KP998539.1
58605860100%0.099%KR020503.1
58365836100%0.099%LC037415.1
54895489100%0.097%LC043168.1
54895489100%0.097%AB983218.1
54765476100%0.097%LC043167.1
54725472100%0.097%LC043139.1
54675467100%0.097%LC043305.1
5457545799%0.097%KJ156329.1
2959295949%0.099%KP698930.1
2953295349%0.099%KP698928.1
2948294849%0.099%KP698929.1
2942294249%0.099%KP698931.1
2700270045%0.099%KR858308.1
1923192333%0.098%KP676383.1
1727172785%0.078%KC597139.1
1644188392%0.077%KJ196286.1
1548154849%0.084%EU921354.2
1548154841%0.087%EF529741.1
1454145473%0.078%DQ438972.1
1430143046%0.084%AB809975.1
1386138645%0.084%AB809976.1
1363136347%0.083%KJ194504.1
1363136347%0.083%KJ194500.1
1363136346%0.083%AB039782.1
1347134746%0.083%AB039781.1
1343134337%0.086%AF315812.1
1341134147%0.082%U02030.1
1325132549%0.081%L23830.1
1319131943%0.083%AB809979.1
1303130333%0.088%JQ751044.1
1280128047%0.082%U22498.1
1269126932%0.089%EF529742.1
1242124231%0.088%AB447409.1
1221122132%0.087%FJ595900.1
1219121930%0.088%JF802507.1
1212121260%0.078%AY502009.1
1195119530%0.089%FJ383845.1
1146114630%0.088%FJ383875.1
1138113850%0.079%KM036380.1
1103110349%0.079%KC832473.1
1103110349%0.079%KC832472.1
1103110349%0.079%KC832471.1
1103110345%0.080%DQ379713.1
1098109849%0.079%KC832470.1
1098109825%0.091%JN176920.1
1092109227%0.089%AB591831.1
1083108347%0.079%EU019230.2
1070107040%0.081%AF414415.1
1070107042%0.081%AF414411.1
1064106440%0.081%AF414413.1
1059105939%0.081%AF414414.1
1044104446%0.079%AB809973.1
1044104447%0.079%KJ196284.1
1044104430%0.086%AF414412.1
1042104246%0.079%AB809998.1
1042104249%0.078%JN899245.1
1042104226%0.088%AB592958.1
1037103750%0.078%DQ379714.1
1035103545%0.079%AB809974.1
1033103346%0.079%AB810005.1
1033103346%0.079%AB810004.1
1033103350%0.078%KJ196276.1
1027102746%0.079%AB542916.1
1026102646%0.079%AB809993.1
1026102625%0.089%JF802506.1
1026102625%0.089%JF802505.1
1024102448%0.078%GQ266697.1
1020102046%0.079%AB809997.1
1020102046%0.079%AB809990.1
1014101446%0.079%AB810001.1
1005100545%0.079%AB810006.1
1005100550%0.078%KC662537.1
1003100345%0.079%AB809994.1
1003100345%0.079%AB809992.1
1003100344%0.079%AB809985.1
1000100045%0.079%AB810007.1
99899845%0.079%AB809977.1
99699644%0.079%AB809978.1
99699646%0.079%GQ856468.1
99299245%0.079%AB810014.1
98798744%0.079%AB809987.1
98798744%0.079%AB809986.1
98798745%0.079%KC464499.1
98798745%0.079%KC464497.1
98598525%0.088%AB112326.1
98198144%0.079%AB809989.1
98198145%0.079%JQ613568.1
98198145%0.079%HQ664990.1
97797744%0.079%AB809996.1
97797739%0.080%KJ145322.1
97697643%0.079%AB809995.1
97697645%0.079%KM198492.1
97697645%0.079%KC464500.1
97697645%0.079%KC464498.1
97297250%0.077%X81879.1
97097044%0.079%AB809988.1
97097045%0.079%HQ449728.1
97097045%0.079%AY772730.1
Link to comment
Share on other sites

LOCUS       KT346356                3266 bp    RNA     linear   VRL 08-SEP-2015
DEFINITION  Norovirus Hu/GII.P17_GII.17/PR668/2015/ITA RNA-dependent RNA
            polymerase (ORF1) gene, partial cds; and major capsid protein
            (ORF2) and minor capsid protein (ORF3) genes, complete cds.
ACCESSION   KT346356
VERSION     KT346356.1  GI:925717767
KEYWORDS    .
SOURCE      Norovirus Hu/GII.P17_GII.17/PR668/2015/ITA
  ORGANISM  Norovirus Hu/GII.P17_GII.17/PR668/2015/ITA
            Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA
            stage; Caliciviridae; Norovirus.
REFERENCE   1  (bases 1 to 3266)
  AUTHORS   Medici,M.C., Tummolo,F. and Martella,V.
  TITLE     Genomic analysis of the emerging GII.17 human norovirus, Italy,
            2015
  JOURNAL   Unpublished
REFERENCE   2  (bases 1 to 3266)
  AUTHORS   Medici,M.C., Tummolo,F. and Martella,V.
  TITLE     Direct Submission
  JOURNAL   Submitted (27-JUL-2015) Unit of Microbiology and Virology,
            Departement of Clinical and Experimental Medicine, University of
            Parma, Viale A. Gramsci, 14, Parma, Parma 43126, Italy
COMMENT     ##Assembly-Data-START##
            Sequencing Technology :: Sanger dideoxy sequencing
            ##Assembly-Data-END##
FEATURES             Location/Qualifiers


     source          1..3266
                     /organism="Norovirus Hu/GII.P17_GII.17/PR668/2015/ITA"
                     /mol_type="genomic RNA"
                     /strain="PR668/2015/ITA"
                     /isolation_source="stools"
                     /host="Homo sapiens"
                     /db_xref="taxon:1711929"
                     /country="Italy"
                     /collection_date="2015"
                     /collected_by="Medici MC"
                     /note="genotype: GII.P17_GII.17"


     gene            <1..822
                     /gene="ORF1"


     CDS             <1..822
                     /gene="ORF1"
                     /codon_start=1
                     /product="RNA-dependent RNA polymerase"
                     /protein_id="ALD09617.1"
                     /db_xref="GI:925717768"
                     /translation="HYDADYSRWDSTQQRAVLEAALEIMVRFSAEPQLAQIVAEDLLS
                     PSVVDVGDFKIAINEGLPSGVPCTSQWNSIAHWLLTLCALSEVTGLGPDIIQANSMYS
                     FYGDDEIVSTDIKLDPEKLTAKLKEYGLKPTRPDKTEGPLVISEDLNGLTFLRRTVTR
                     DPAGWFGKLDQNSILRQLYWTRGPNHEDPSETMIPHAQRPVQLMALLGESSLHGPSFY
                     SKVSKLVISELKEGGMDFYVPRQESMFRWMRFSDLSTWEGDRNLAPSFVNEDGVE"


     gene            803..2425
                     /gene="ORF2"


     CDS             803..2425
                     /gene="ORF2"
                     /codon_start=1
                     /product="major capsid protein"
                     /protein_id="ALD09618.1"
                     /db_xref="GI:925717769"
                     /translation="MKMASNDAAPSNDGAAGLVPEGNNETLPLEPVAGAAIAAPVTGQ
                     NNIIDPWIRTNFVQAPNGEFTVSPRNSPGEILLNLELGPDLNPYLAHLSRMYNGYAGG
                     VEVQVLLAGNAFTAGKILFAAVPPNFPVEFLSPAQITMLPHLIVDVRTLEPIMIPLPD
                     ARNTFFHYSNQPNSRMRLVAMLYTPLRSNGSGDDVFTVSCRVLTRPTPDFEFTYLVPP
                     SVESKTKPFSLPILTLSELTNSRFPVPIDSLFTAQNNVLQVQCQNGRCTLDGELQGTT
                     QLLPSGICAFRGRVTAQINQRDRWHMQLQNLNGTTYDPTDDVPAPLGTPDFKGVVFGM
                     VSQRNVGNDAPGSTRAQQAWVSTYSPQFVPKLGSVNLRISDNDDFQFQPTKFTPVGVN
                     DDDDGHPFRQWELPNYSGELTLNMNLAPPVAPNFPGEQLLFFRSFVPCSGGYNQGIID
                     CLIPQEWIQHFYQESAPSQSDVALIRYVNPDTGRTLFEAKLHRSGYITVAHSGDYPLV
                     VPANGHFRFDSWVNQFYSLAPMGTGNGRRRAQ"


     gene            2425..3204
                     /gene="ORF3"


     CDS             2425..3204
                     /gene="ORF3"
                     /codon_start=1
                     /product="minor capsid protein"
                     /protein_id="ALD09619.1"
                     /db_xref="GI:925717770"
                     /translation="MAGAFIAGLAGDMLTSSVGSLVNAGANAINQKIDFENNKQLQSA
                     SFQHDKEMLQAQVKATKQLQSEMIALKQGVLAAGGFSPTDAARGAIGAPMTKVLDWSG
                     TRYWAPNSTKTTGYSGQFTSSPVHMSSPNASQSKPVKPRSLAPSSSSSSVYSTYTQST
                     HLISGSSSNASSASTKLTNLSSGSSQNRTAEWVNQQRSLSPFMSGALNISHVTPPSSR
                     ASSSGTVSTVPKEVLDSWTSAFNTHRQPLFAHLRVRGESRV"
ORIGIN      
        1 cactatgatg cagactactc ccgctgggac tccacacagc agcgggcagt gctggaagcg
       61 gcacttgaaa tcatggtgag attttctgct gagccacagc tggcacaaat agtggcagag
      121 gacctgctgt caccaagtgt ggttgatgtg ggcgatttca aaatcgctat caatgaaggc
      181 ctaccatctg gcgtgccttg cacctcacaa tggaattcta ttgcccactg gttacttacc
      241 ttgtgtgccc tttctgaagt gacaggatta ggtcctgaca tcatacaagc taactccatg
      301 tactctttct atggtgatga tgagattgtg agcacagaca taaaattgga cccagagaaa
      361 ttgaccgcaa agctcaaaga atatggcctt aaacccactc ggcccgacaa aactgagggg
      421 ccgttggtga ttagtgaaga cctgaatggg ttgactttcc tccgccgaac agtcacccgt
      481 gatccagcag gttggtttgg aaagttggac caaaactcca tcctcaggca gttgtactgg
      541 acaagaggac ccaaccatga agaccccagt gagaccatga taccacacgc acaaagacct
      601 gtgcagctca tggcactact aggagaatcc tccctacatg gaccctcatt ttacagcaag
      661 gttagcaaat tagtcatatc tgaacttaaa gagggaggaa tggattttta tgtgcccaga
      721 caagagtcaa tgttcagatg gatgaggttc tcagatctaa gcacatggga gggcgatcgc
      781 aatctggctc ccagttttgt gaatgaagat ggcgtcgaat gacgccgctc catctaatga
      841 tggtgctgct ggtctcgtac cagagggcaa caacgagacc cttcccctag aaccagttgc
      901 gggcgcagct atagccgcac ccgtcactgg ccaaaataac ataattgacc cctggattag
      961 aacaaatttt gtgcaagcac caaatggaga gttcacagtg tcacccagaa actctcctgg
     1021 agaaatttta ttaaacttag agttgggccc tgatttgaac ccttatttgg ctcatttgtc
     1081 aaggatgtac aatgggtatg ctggtggagt ggaagttcag gttctcctgg cagggaacgc
     1141 gttcactgcc ggaaagatcc tcttcgccgc cgtcccgcca aatttcccag tggaattctt
     1201 aagcccagcc cagatcacaa tgctccctca tttaatagta gatgttagga ctcttgaacc
     1261 aattatgatc ccactccctg atgctaggaa tacattcttc cattatagta accagcctaa
     1321 cagccgcatg agattagtgg ctatgctcta caccccactc agatctaatg gctcaggtga
     1381 tgatgtcttt actgtctctt gcagggtttt gactaggcct actcctgatt ttgagttcac
     1441 ttatttagtg ccaccttctg ttgaatctaa aactaagcct ttttctttac ctattttaac
     1501 cctttctgag ctcacaaatt cgaggttccc agtccccatc gattcgcttt tcaccgccca
     1561 gaataatgtg ttgcaggtgc agtgtcaaaa tggcaggtgt acacttgatg gtgagttaca
     1621 aggcacaacc cagttgctcc catctggcat ctgtgcattc agaggacggg tgacagcaca
     1681 aattaaccaa cgtgacaggt ggcacatgca actgcaaaac ctcaatggta caacatatga
     1741 cccaactgat gatgtgccag ccccgctggg tacacctgac ttcaagggcg tcgtgtttgg
     1801 gatggtaagc caaagaaatg tgggtaatga tgcgcctggc tcaaccagag cccaacaggc
     1861 gtgggtttca acctatagcc cccaatttgt ccccaaatta ggttctgtca atcttagaat
     1921 tagtgataat gatgatttcc aattccagcc gacaaaattc acaccagtgg gcgtcaatga
     1981 tgacgatgat ggccacccgt tcagacaatg ggaattacca aactattcag gggagcttac
     2041 cttgaatatg aatcttgccc ccccagttgc tccaaatttt cctggtgaac aattgttatt
     2101 cttcagatct ttcgtgccat gctcaggagg ttacaaccaa ggtattatag attgtcttat
     2161 tccccaagaa tggatccaac acttctatca ggaatcagca ccctcccagt cagacgtggc
     2221 cctaatcagg tatgtcaacc ctgatacggg acgtacactg tttgaagcaa aattgcacag
     2281 atctggttac attactgtgg ctcactctgg agactatcct cttgttgttc cggctaatgg
     2341 acactttaga tttgattctt gggtaaatca gttttactca ctcgccccaa tgggaactgg
     2401 gaatgggcga aggagggctc agtaatggct ggggctttca ttgcaggatt ggcaggcgac
     2461 atgctcacgt catctgtggg ctcccttgtg aacgcagggg caaacgccat caaccaaaag
     2521 atagactttg aaaacaacaa acaactccag tctgcttcct ttcagcatga taaagagatg
     2581 ctccaagcgc aggtgaaggc aaccaagcag ctgcaatctg aaatgatagc cctaaaacag
     2641 ggggttttgg ccgcaggcgg cttttccccc actgatgcag caaggggagc cattggtgca
     2701 cccatgacaa aggtgcttga ctggtctggc actcgatact gggcgcccaa ctccacaaag
     2761 acaactggtt attcgggaca attcacctct tcacctgtgc acatgtctag cccaaatgct
     2821 tcacaatcaa aacctgtaaa gcctaggtct ctagcccctt cctcttcttc tagcagtgtc
     2881 tatagtacgt acactcaatc tactcattta atatctggct cttctagtaa tgcttcttct
     2941 gcctctacaa aattgacaaa tttaagctct ggctcctctc aaaacagaac agcagagtgg
     3001 gtaaatcaac agagaagtct tagccctttc atgagtggcg cacttaacat ctcacatgtc
     3061 acgccaccct caagtagggc ttccagttct gggacggtct cgaccgtgcc caaggaagtt
     3121 ttggactcct ggacgtctgc gtttaacaca cacagacaac cgctcttcgc acacctcaga
     3181 gtgagggggg agtcacgtgt ttagtgaaaa gaaataattg gctataatgt gatttctttc
     3241 taaaatttgg ctaatttgag tctttt
Link to comment
Share on other sites

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...